Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2014 EURASIP. Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease predicted to become the third leading cause of death by 2030. Patients with COPD are at risk of exacerbations in their symptoms, which have an adverse effect on their quality of life and may require emergency hospital admission. Using the results of a pilot study of an m-Health system for COPD self-management and tele-monitoring, we demonstrate a data-driven approach for computing personalised alert thresholds to prioritise patients for clinical review. Univariate and multivariate methodologies are used to analyse and fuse daily symptom scores, heart rate, and oxygen saturation measurements. We discuss the benefits of a multivariate kernel density estimator which improves on univariate approaches.

Type

Conference paper

Publication Date

01/01/2014

Pages

1990 - 1994