Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This is the second part of a two-part paper considering a measurement network design based on a stochastic Lagrangian particle dispersion model (LPDM) developed by Marek Uliasz, in this case for South Africa. A sensitivity analysis was performed for different specifications of the network design parameters which were applied to this South African test case. The LPDM, which can be used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candidate station for the months of July (representative of the Southern Hemisphere winter) and January (summer). The network optimisation procedure was carried out under a standard set of conditions, similar to those applied to the Australian test case in Part 1, for both months and for the combined 2 months, using the incremental optimisation (IO) routine. The optimal network design setup was subtly changed, one parameter at a time, and the optimisation routine was re-run under each set of modified conditions and compared to the original optimal network design. The assessment of the similarity between network solutions showed that changing the height of the surface grid cells, including an uncertainty estimate for the ocean fluxes, or increasing the night-time observation error uncertainty did not result in any significant changes in the positioning of the stations relative to the standard design. However, changing the prior flux error covariance matrix, or increasing the spatial resolution, did. Large aggregation errors were calculated for a number of candidate measurement sites using the resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as close to the resolution of the transport model as the computing system can manage, to mitigate the exclusion of sites which could potentially be beneficial to the network. Including a generic correlation structure in the prior flux error covariance matrix led to pronounced changes in the network solution. The genetic algorithm (GA) was able to find a marginally better solution than the IO procedure, increasing uncertainty reduction by 0.3 %, but still included the most influential stations from the standard network design. In addition, the computational cost of the GA compared to IO was much higher. Overall the results suggest that a good improvement in knowledge of South African fluxes is available from a feasible atmospheric network, and that the general features of this network are invariable under several reasonable choices in a network design study.

Original publication




Journal article


Atmospheric Chemistry and Physics


European Geosciences Union

Publication Date





2051 - 2069